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A Proof of the Odd-Symmetry of
the Phases for Minimum Weight Perturbation,

Phase-Only Null Synthesis

1. INTRODUCTION

The current interest in phase-only control of the element weights of linear

arrays for adaptive nulling 1 - 9 and null synthesis 1 0 - 1 6 is a result of the increas-

ing importance of phased arrays and adaptive processing. Null synthesis has

considerable value for adaptive nulling in that it can help determine limr' +% wh-t

can be achieved adaptively.

In null synthesis, as in adaptive nulling, it is generally undesirable to impose

nulls in a given array antenna pattern at the expense of large distortion In regions

of the pattern aside from the imposed null locations. One way to reduce such
pattern distortion is to minimize the perturbations of the element weights. The

imposing of nulls in the pattern of a linear array by phase-only weight control

subject to minimization of the weight perturbations is, unlike for combined phase

and amplitude control, a nonlinear problem and, in general, cannot be solved

analytically. Numerical technques 1 4 ' 17 must be used to calculate the phases re-
quired for minimized %Noight perturbation, phase-only null synthesis.

If the pattern in which nulls are to be imposed is real, it is reasonable to as-

sume that the pattern satisfying the null constraints and corresponding to minimum

ele-ment weight perturbations should likewise be real. The phase perturbations of

(Received for publication 11 April 1983)

Bocaus.- of the larg, numbpr of referenceps cited above, they will not be listed here.
See References, page 19.
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the element weights are then odd-symmetric with respect to a phase reference Io-

cated at the center of the array. If nonlinear programming or other numerical

techniques are used to calculate the phases for null synthesis, the odd-symmetry

property of the phases can be used to reduce the number of unknown phases by a

factor of a half, thereby significantly increasing computational efficiency.

Although intuitively reasonable, nevertheless a proof of the odd-symmetry prop-

erty is desirable. In an earlier report, 18 the author proved the odd-symmetry

property for the case of a single imposed null. The method of proof, however,

unfortunately did not generalize to multiple imposed nulls. It is the purpose of

this report to give a general proof of the odd-symmetry property.

AR

2. PROOF OF THE ODD-SYMMETRY OF THE PHASES FOR MINIMUM WEIGHT
PERTURBATION, PHASE-ONLY NULL SYNTHESIS

We consider a linear array of N equispaced isotropic elements whose field

pattern is given by 4.-

jdnu
p0 (u) 2 ane (1)

n=1

In Eq. (1) the {a} are the complex element weights,

d (N 2 (n 1) -d n 1, 2, .. N (2)

and

u -27/N d sin 9

where

X wavelength,

d interelement spacing, :inI

o angle measured forn broadside ro tile array.

The phase reference is taken to be the center of the array. rh pattern is

assumed real so that the complex element weights satisfy the relation'

18. Shore, R. A. (1983) On the Od-Symmetrv of Minimum Phas,-Onl"
Perturbat ions, RADC-TH-83-26.

19. Oppenheim, A. V., and Schaffl, R. W. (1975) Digital Signal Processing,
Prentice-Ilall, N.J., pp. 24-2f6.
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a~+ .a* n 1, 2,...N. (3)6

Let 6 n' n 1, 2....N be the set of phase perturbations that (a) imposes nulls

in the patte-rn at the locations u =u k. k =1. 2....K:

Sa e e 0 k 1, 2,...K (4)

an mNiinimizes the weighted sun) of the squares of the absolute values of the

5element %%eight pertu rbat ionsOl

F=N 2~~

n=1

Trhe weighting coefficients, {~c n in Eq. (5) are assumed real, positive, and

symmetric:

0N-n+ 1 n n 1......N . (6)

We wish to shfow. that thf, phase p- rt urbat ions are odd-symmetric:

6 N-n-~l , n 1. 2....... (7)

so that the pertur-bed patte-rn,

NdU

o(u) 3

isre.

6Tho choio- of cr-,, I fo- al1 n !o:ike-s F th, surr of FOw squ-ares of the absolute
value-s of thte we ight p'.rt xo t irons-. Fn, If -a' -ngt 1ia -piinV of the array (,l( -
mont s, this is e-q0%.Alen1 t-o r-,itrir~ng ili. or strir tr ofrn pertu rb-ation fN!,
09 fr'om- -77 112 to +7,,2. Othr- r'hoj i( -- ) Ili-f th ri irA' :! pplication to null
4NvWtles..,s are aIlso Fri-ll' x1i I," )1'fll
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20
The proof of Eq. (7) uses t-e method of Lagrangian multipliers. We first

rewrite the null constraints of Eq. (4) in the form 1.O

an (en_ 1)e dnu k  o(Uk) k 1, 2,. K (8)

n1

and then make the constraints purely real by multiplying the left-hand side of

Eq. (8) by its complex conjugate and squaring the (real) right-hand side, thus

obtaining

N.. . N a n 'e e -J 1)m e(dn~dmUk -. J= .,(9

k=1, 2 ..... K

Since

N

F = ° ca 12 (cn -io (,'i "n

n=l

c lan 12 (2 - 2 cos

n=l
1

N N

= 2 cnlanl 2 -2 2 cnlanl 2 cos 0n (10)
n=l n=1

minimizing F is equivalent to maximizing

N

AL
F' = E~j cnlanl2 cos bn (11)-.:

20. Fletcher, R. (1981) Practical Methods of Optimization; Vol. 2. Constrained
Optimization, John Wiley & Sons, New York, Ch. 9.
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We now form the Lagrangian

K

L =F1 + Xk Ck
k=1

where the constraint functions, Ck from Eq. (9) are given by "0

N N ijd -j4m j(dn-dm )Uk 2 (12)
Ck a2 ~ aam (e ,ie- ej p (u k)

n=1 m=1

and the Ix f are the (real) Lagrangian multipliers. For the to locally max-

imize (or minimize) F' subject to satisfying the constraints C k 0 it is necessary

that the gradient of L with respect to the (0 ) be zero. Accordingly we differen-

tiate L with respect to an arbitrary one of the ( j say p and equate the deriva-

tive to zero:

K k

p k=l p

N -_b ~(k (13)

From Eq. (11)

n= I 12 sinm (14)

To differentiate C with respect to t we group the terms of the double summation
k p

in Eq. (12) containing according as to whether (1) n p , m p; (2) n p
p

m p, or (3) n = m p. For the first group of terms

'j~~' N -j -jd

C) Jdpu Na p k m(e

k' L 
:

j a j d' p du k aN ~ 1 ' - jd muk - ,j~ - J 1)rdF~
FE mq ( 1 

.

0¢--p ' C la l2 si p 14 ," 1

Todifeeniae k it rspctto pwegrupth trm o te oulesumaio"AL.



P P(u k aP p p+d p uk) jIa~I (i e ij) , (1 5a) 0

.%,here '.e have used Eq. (8) and the fact .that p (u) is real. The contribution of the

aCk
Second group of termis to kis simply the complex conjugate of that of the first -

gtroup (jk a 2 (

j (uk a~ e Pi pdpuk + -l 12 (15b)

%Oiil, th, rontribution of the one term in group (3) is

i 1F a2 (c'p - 1)(ep- 1 1 Ia12 c (2 -2 cos OP)
p

21a P2 sin 6 . (1 50

Summiing th, three, contributions [Eqs. (15a) through 15(c)] we obtain

o0 k *~p

Substituting E~q. (14) and Eq. (16) in Eq. (13) then yields

K

"I a ino p 2 ~2Xp(uk ) f a~ c(Pdu (17)
k=1I

Nnxk wkritf tim complex amplitude a in thr. magnitude-and-phase form
p

12 -0



qu-M im; (.0 imiv s (t 'O

N -o p (19b) ,t

Substituti i ' [:q. (18) in lEq. (17),

K

I l psin (h ) 2 i2 (ko(Uk) sin ( 1 +dU k + Cp)
k I

r 2 Ak o(uk cos (du~ + a ~)sin
L k 1ok 1k 1 s

2 Ak P)o(Uk) sin (dpUk + C os

t'romll %%.hi(ch, r'e,;irrangitn , we' obtaitn

2 A k 1o (u k sin (d p u k + (p).':

k i (20)

2 IN -2 (tic0 ( +a
,',,:,,, k c) ' ' , k p-k ,o 'k + p  " :

k. 1

But- p 1 I, .- "1

Tit ,!IO _p -tann

sin,, i vb, ,, ol 1.:(s. (2), and (19), the numerator of Hq. (20) is changed in

-,iL;ri mixN, ,% i] c Ilit, (ihnomninator remains unchanged.

I .tmUaiin (21) implies tihat either

O\_Fi± -() (22)

11
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or

ON-p+l -Op + ir (23)

Equation (22) is the odd-symmetry property we are attempting to demonstrate.

To complete the proof we show that if there is a solution to the constrained opti-

mization problem containing one or more pairs of phases that satisfy Eq. (23), then -* ,

by subtracting r/ 2 from these phases we obtain a new solution that satisfies

Eq. (22) and gives the same value of the maximized function F' of Eq. (11). It .1

then follows that the phase perturbations for minimized weight perturbation null

synthesis can always be assumed to satisfy Eq. (22) without the risk of discarding -J
a solution with a larger value of F' .  

t
Suppose that there is a solution to the constrained optimization problem con- -.

taining one or more pairs of phase perturbations that satisfy Eq. (23). (We do not -

claim that one actually exists.) We first note that the contribution to the total

array pattern of those pairs of elements whose phase perturbations satisfy Eq. (23)

is purely imaginary, while the contribution of the element pairs whose phase per-

turbations obey Eq. (22) is purely real. The two patterns, imaginary and real,

are completely uncoupled since they derive from distinct element sets, and hence

both patterns must have nulls at the imposed null locations for the constraints,

Eq. (9), to be satisfied. It follows that if the weights of all the elements whose

phase perturbations satisfy Eq. (23) are multiplied by the same constant, the

resulting total pattern will still have nulls at all the imposed null locations. We

now form a new set of phase perturbations by subtracting ?r/2 -equivalently

multiplying the respective element weights by e-jir/2 j -from all the phases

satisfying Eq. (23). Denoting the new phase perturbations by 4,'.

Op, ITp p2

and

=-p+l ON-p+I - + lr) 2 -2 p2 =p 2 p

where P' denotes the set of indices of all the phases satisfying Eq. (23). Thus the

altered phase perturbations, { ' }, obey Eq. (22). The new total pattern is now

purely real and, from the remark made just above about multiplying the element

weights by a constant, has nulls at all the imposed null locations {Uk' so that the

null constraints, Eq. (9), continue to be satisfied. It remains to consider the

value of F'. The contribution of the phases satisfying Eq. (23) to the value of F'

is zero since, using Eqs. (6) and (19a),

14



2~ 12 .'1

C pa p 2 COS p + N-p+l 'N-p+1 N' -p+ I

C a2 [cos pcos(- I 7)I 0 ..(25)
p pp

The contribution of the altered phase pairs to the vnlu( of V' is, using 1.:qs. ;),

(19a), and (24)

1c la 1cI~2 Cos 6+ c\ ±liaN_+l 2 Np+

PEP,

-2 2c~ co ~~ sin 6 (2 G;)

the factor of 1/2 is included because tht, phase pairs ar'e counted twice, once for

(each momber of the pair. Now if I'q. (17). the equation obtain(,d by settirl' the

derivative of the Laarangian equal to zero, is sunmed with rospect to p from 1 to
N w o, obtain 

,-,

N K [ N+uV

P cill sin 6 2 1: 'k p(uk) p 0  pk

p1 k=1 a=

From %khich it follows by substituting 1.:q. (4) that

N 
:-

c alp sin p 0 (27)
a 1 )

i t h-. th. cont rihution t, Ih,. sum on th,. 1, ft-hand sib,. )f 1:1. (27) of nll phas pairs

: . i',r 1.q. (22) i-i /, ro, it fllo,.ks that tl e contribution of th,. remnining pair.-4

!h. ;l. l m - :du-a n , U. ut thi-is sum is mif(.is.lv Ih. sum on th,. ri:iht-hand

s i, . ( I n, .iHtr:,, in,  -'2 F1omi) aII ph:s.s s, tisrvin Lq. (23) o,-s

n ' r, h,. fr'et ti:)t th, it ,)ntrihtutior t o tic \':l ,r o 
.
I it , -o. v,. h:,v, thus

' 'l:41'c . : ri( , 'ic,' i 'ih,.r i.-; , solution to th, ,'rrr.- '- irnc - I p)t i ' a-

.r ol'. ,'. a i'c oh', -< - 'i .-n t (I . 123). th, n r r,. I n c n n;n br ,ictnin, I

"17,
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by subtracting 7r/2 from all these phases that gives the same value of F' and that

satisfies Eq. (22). Therefore, if we assume that the phase perturbations for

minimized weight perturbation null synthesis are odd-symmetric, there is no

possibility of inadvertently discarding a solution without odd-symmetry that gives

a smaller sum of weighted squared absolute weight perturbations.

3. CONCLUDING REMARKS

In this section we comment on some aspects and implications of the proof

given in Section 2.

(1) It is worth noting that it is not possible to reverse the procedure we have used

in the last part of the proof to show that any solution with phases satisfying Eq. (23)

can be replaced by a purely odd-symmetric solution with the same value of Ft. If

*7r/2 is added to all phases satisfying Eq. (22), we do indeed obtain a solution that

satisfies Eq. (23) and the null constraints. However, letting P denote the set of

indices of all phases that satisfy Eq. (22), the contribution of these phases to the

value of Ft is

C lap1 2 cosp

PpP

while the contribution of the altered phases to Ft is zero by Eq. (25), and there is

now no way of arguing that the contribution to Ft remains unchanged or increases

as a result of having altered the phases.

(2)In the proof we have not attempted to eliminate the possibility of there actually

being a solution to the minimized weight perturbation, null synthesis problem with-

out odd-symmetry of the phase perturbations. What we have shown is that one

cannot possibly minimize the weight perturbations more without odd-symmetry

than with it and hence, since odd-symmetry and a real perturbed pattern is a

simpler and more desirable situation than non-odd-symmetry and a complex

pattern, one should feel free to assume odd-symmetry from the outset in numerical

calculations. The proof in fact suggests that a stronger result is true: namely,

that one can always do better with a purely odd-symmetric solution than with a

solution containing some phase perturbations that satisfy Eq. (23), and hence that

Eq. (23) can be dismissed as an "extraneous" solution of Eq. (21), or quite pos-

sibly a solution that maximizes rather than minimizes the weight perturbations.

As we have noted in the proof, if there were a solution to the minimized

weight perturbation nulling problem with some, but not all, phase pairs

16
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odd-symmetric, then the array would be decomposable into two subarrays, each

consisting of a set of pairs of symmetrically-placed elements. One subarray

Aould have a purely real and the other a purely imaginary pattern, and each pat-

t,.'ni would have nulls at all the imposed null locations. Hence, the original

problem of imposing nulls in a pattern with minimized weight perturbations would

be ropihed by two separate nulling problems. An immediate consequence of this -

is that the upper limit on the possible number of imposed nulls would be reduced

from the usual N/2 with phase-only nulling to Nmin/2 , with N the number of
m inm in

,lenm.nts in the smaller of the two subarrays. No decomposition into two sub-

arrays could allow more than N/4 imposed nulls. Furthermore, since the same

nulls would be imposed in the two independent subarray patterns, it is to be

,xpected that the resultant perturbations of the overall pattern and array weights

would have to be larger than they would be if the most efficient use were made of

all array elements as one group to impose pattern nulls. It is also important to

note that in a very real sense, minimization of the weight perturbations with

phases satisfying Eq. (23) is impossible. The contribution of each pair of elements

with phases satisfying Eq. (23) to the sum of squared weight perturbations given

by Eq. (10) is, using Eq. (25) and the symmetry of the {cnj and the fan).

2 c p  ap l  + ONC l a ,,_,+, )  
'-i

p 2 ±c.ap 2  IaNpp+lN l"

-2c a 2 cos + cos.+) -- 4c ia 12

This contribution is not only a fixed quantity that cannot be decreased by varying

(b but also represents a large perturbation of the pairof array weights being exactly

one half of the maximum possible perturbation. For these reasons, although not

proved rigorously, it is plausible that the odd-symmetric solution, Eq. (22), to

Eq. (21) is not only at least as good as any solution containing phases that satisfy

E-q. (2:3), but is in fact the only valid form of the phase perturbations for minimized

weight perturbation, null synthesis.

17
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